
3 Part 1. Surfaces & the Implicit Function

Theorem 2021-22

This is not a course where surfaces are studies as thoroughly as they deserve,
for that see MATH41061 Differentiable Manifolds. Here we introduce them
as motivation and a source of examples for the theory of functions of sev-
eral variables. Surfaces are also the natural setting for Extremal Values &
Lagrange Multipliers and Stokes’ Theorem, subjects of later chapters.

Before our first definition of a surface recall from Linear Algebra that
for a matrix the row rank, the maximal number of linearly independent
rows, equals the column rank, the maximal number of linearly independent
columns. This common number is called the rank of the matrix.

If M is an m×n matrix then row rank M ≤ m and column rank M ≤ n.
So the common value, rank M, must be ≤ both m and n. That is, rank
M ≤ min (m,n).

Definition 1 A matrix is of full rank if it has the largest possible rank.
That is, the m× n matrix M is of full rank if rankM = min (m,n).

See Appendix for more discussion of full-rank.

Note that a 1× n matrix is always of full rank unless all entries are 0.

3.1 Surface given as a Level Set; implicit description

Definition 2 Let f : V ⊆ Rn → Rm for an open set V . Then the level set
of f is

f−1(0) = {x ∈ V : f(x) = 0.}

Important The notation f−1 does not mean that f is invertible.

Definition 3 A surface S in Rn is described as a level set if there exists an
open set V ⊆ Rn, and a C1-function f : V ⊆ Rn → Rm for some 1 ≤ m < n,
such that

S =
{
x ∈ V : f(x) = 0 and Jf(x) is of full-rank

}
.

Note One consequence of f being a C1-function on V is that all the partial
derivatives of f exist and thus Jf(x) is well-defined for all x ∈ V .
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Most examples of a surface in this course will be given as a level set. In
any given example we have to check that

f(x) = 0 =⇒ Jf(x) is of full-rank.

We most often this by showing the contrapositive;

Jf(x) not of full-rank =⇒ f(x) 6= 0.

Example 4 Is the level set of x = (x, y, u, v)T ∈ R4 satisfying xy+uv−1 = 0
a surface?

Solution Define f : R4 → R by f(x) = xy+uv−1. Then Jf(x) = (y, x, v, u).
The Jacobian matrix Jf(x) is not of full-rank only if (y, x, v, u) = 0, i.e.
x = 0. But f(0) = −1 6= 0, hence we have a surface. �

The verification that we have a surface can be long, which is why the
details of the following example will be given in the Problems Class.

Example 5 Consider the level set of (x, y, u, v)T ∈ R4 satisfying

x2 + y2 + u2 + v2 = 11 and xy + uv = 1. (1)

First convince yourself this is non-empty and then ask, is it a surface? Is
the Jacobian matrix always of full-rank?

Solution given in Problems Class. We do not want to waste time on an
empty set. Here the set of solutions is not empty; for example, the second
equation is satisfied with x = 0, u = v = 1. and with these choices the first
equation reduces to y2 = 9 which has (two) solutions.

Define

f(x) =

(
x2 + y2 + u2 + v2 − 11

xy + uv − 1

)
.

The Jacobian matrix is

Jf(x) =

(
2x 2y 2u 2v
y x v u

)
,

where x = (x, y, u, v)T . When is the matrix not of full-rank? It is not of
full-rank if one row is a multiple of the other, i.e. there exists λ ∈ R :

(2x, 2y, 2u, 2v) = λ (y, x, v, u) .
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This gives four equations

2x = λy, 2y = λx, 2u = 2v and 2v = λu. (2)

Combine the first two equations as 4x = λ (2y) = λ (λx) = λ2x. This
means that either λ2 = 4 or x = 0 (Students often forget the second case)

If λ2 = 4 then either λ = 2 or λ = −2.

If λ = 2 then (2) reduces to x = y and u = v. Then

f(x) =

(
2x2 + 2u2 − 11
x2 + u2 − 1

)
which is never 0 (for example, if the second coordinate is 0 then the first will
be −9)

If λ = −2 then (2) reduces to x = −y and u = −v. Then

f(x) =

(
2x2 + 2u2 − 11
−x2 − u2 − 1

)
which is never 0 (the second coordinate can never be zero).

If x = 0 then 2y = λx means y = 0. Return to (2) and combine the last
two equations to give 4u = λ2u. So either λ2 = 4 or u = 0. We have already
dealt with λ2 = 4 so only u = 0 remains. But 2v = λu means v = 0, i.e.
x = y = u = v = 0. That is, x = 0, yet f(0) = (−11,−1)T 6= 0.

We have shown that if Jf(x) is not of full-rank then x is not a solution
of (1). The contrapositive of this is our required result; if x is a solution of
(1) then Jf(x) is of full-rank. Hence the level set is a surface. �

3.2 Surface given as an Image Set; the parametric de-
scription

Definition 6 A surface S in Rn is described as an image set if, for some
0 < r < n, there exists a C1-function F : U ⊆ Rr → Rn on the open set U ,
such that

S =
{
F(u) : u ∈ U and JF(u) is of full-rank

}
.

We also say this is a parametric description of the surface, the coordinates
of u being the parameters.

Note One consequence of F being a C1-function on U is that all the partial
derivatives of F exist and thus JF(u) is well-defined for all u ∈ U .
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Example 7 Is 
 u3

v3

uv

 :

(
u
v

)
∈ R2

 (3)

a parametric surface?

Answer No. Consider the Jacobian matrix at a general point: 3u2 0
0 3v2

v u

 .

If u 6= 0 then from the first row we can see that the first column is not a
non-zero multiple of the second and so they are linearly independent. Simi-
larly, if v 6= 0 then from the second row we can see that the second column
is not a non-zero multiple of the first and so they are linearly independent.
Thus for (u, v)T 6= 0 the Jacobian matrix is of full rank.

This leaves (u, v)T = 0 when the two columns of the matrix are identical
(i.e. 0) and so not linearly independent. Hence we have a surface except at
the origin. �

Picture of the surface:

For this course S ⊆ Rn is a surface if it can be written in at least one
of these two ways; as a level set or parametrically.
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3.3 Graphs in Rn.

Definition 8 The graph of a C1-function φ : U ⊆ Rr → Rm is the image
of the function

F(u) =

(
u

φ(u)

)
, (4)

for u ∈ U .

Note that F : U → Rm+r. If we want F to map to Rn we need to choose
m = n− r.

Example 9 The graph of φ(x) = x2 + y2, x ∈ R2, is
 x

y
x2 + y2

 : x ∈ R2

 . (5)

Our definition of graph may appear to be restrictive, since
 x

x2 + z2

z

 :

(
x
z

)
∈ R2


is also an example of a graph. Yet, there is a choice in labelling the axes
of R3, and we assume they are labelled (or equivalently, permuted) so the
graph looks like (5), or (4) in general.

Graphs as surfaces

Proposition 10 Graphs are parametric surfaces everywhere.

Proof Consider the Jacobian matrix of (4) :

JF(u) =

(
Ir

Jφ(u)

)
.

This is well-defined for all u ∈ U since φ is assumed to be C1 on U , in
particular all it’s partial derivatives exist on U . Because of the identity
matrix the columns of JF(u) are linearly independent (For example, the
first column has a 1 in the top position. Thus the first column cannot be
linear combination of the others, all of which have a 0 in the top position.)
Hence the Jacobian matrix is of full rank on U and so the graph (4) is a
parametric surface. �

The converse is not true; not all surfaces can be written as a graph.
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Example 11 The boundary of the unit disc in R2 is a surface but not a
graph.

Solution The boundary of the unit disc in R2 can be given parametrically
as the image set {(

cos θ
sin θ

)
: 0 ≤ θ < 2π

}
.

Here JF(θ) = (− sin θ, cos θ)T 6= 0 and so is of full-rank for all θ.

Alternatively the boundary can be given as the level set{
(x, y)T ∈ R2 : x2 + y2 = 1

}
,

when Jf(x) = (2x, 2y) 6= 0 for all x : x2 + y2 = 1, and so is of full-rank for
all x.

But the boundary cannot be given as a graph{(
x

φ (x)

)
: x ∈ I

}
for some set I since, for every −1 < x < 1, there are two possible values for
y : x2 + y2 = 1. �

But the boundary can be covered, i.e. is the union of, four graph. Namely(
x√

1− x2

)
,

(
x

−
√

1− x2

)
,

( √
1− y2
y

)
and

(
−
√

1− y2
y

)
,

for −1 < x, y < 1. (Make sure you understand why we have four graphs and
not two; this is because we require the variables x or y to lie in an open set.
So the first two graphs above will not include the points (±1, 0)T , these will
be covered by the latter two graphs.)

What we take away from this is that though the boundary is not a graph,
every point on the boundary is in the image of some graph.
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3.4 Linear Algebra

Vector subspaces of Rn.

The definition that V ⊆ Rn is a vector subspace is that for all u,v ∈ V
and λ ∈ R we have u + v ∈ V and λv ∈ V . From the first year we know that
all vector spaces have a basis. If {b1,b2, ...,br} is a basis for V we say V has
dimension r. Since V ⊆ Rn we must have r ≤ n.

Also from the First year we know that ifM ∈Mn,r (R) then {Mt : t ∈ Rr}
is a vector subspace of Rn. In fact, for t ∈ Rr,

Mt =
r∑
i=1

tiMei =
r∑
i=1

tici

where ci is the i-th column of M . Hence

{Mt : t ∈ Rr} = span {c1, c2, ..., cr} . (6)

From this we find a connection between full-rank and dimension.

Lemma 12 V ⊆ Rn is a vector subspace of dimension r iff there exists a
full rank matrix M ∈Mn,r (R) such that V = {Mt : t ∈ Rr}.

Another example in First year linear algebra was that if N ∈ Mm,n (R)
then {x ∈ Rn : Nx = 0} is a vector subspace of Rn.

Note that matrix multiplication means that Nx = 0 iff x · rj = 0 for all
the rows of N , so 1 ≤ j ≤ m. In turn this is equivalent to x · u = 0 for all
u, linear combinations of rj, 1 ≤ j ≤ m, i.e. u ∈ span {r1, ..., rm}. To write
this in a similar way to (6) we need some new terminology.

Definition 13 If S ⊆ Rn then the orthogonal complement of S is

S⊥ = {x ∈ Rn : ∀s ∈ S, x · s = 0} .

It is easy to check that S⊥ is a vector space (see problem sheet). The
argument before the definition gives

{x ∈ Rn : Nx = 0} = span {r1, ..., rm}⊥ .

We need then only assume the fact that if V ⊆ Rn is a vector subspace
then dimV⊥ = n − dimV (see Appendix) to deduce another connection
between dimension and full-rank.
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Lemma 14 V ⊆ Rn is a vector subspace of dimension r iff there exists a
full rank matrix N ∈Mn−r,n (R) such that V = {x ∈ Rn : Nx = 0}.

For the motivation of two fundamental results of this course we have

Lemma 15 V ⊆ Rn is a vector subspace of Rn of dimension r iff it can be
written as a graph of a linear function Rr → Rn−r.

Proof ( =⇒ ) Assume V ⊆ Rn is a vector subspace of Rn of dimension r.
Let the columns of M ∈Mn,r (R) be the vectors in a basis of V . The matrix
has column rank r and so will have row rank r, i.e. r linearly independent
rows. By permuting the axes of Rn if necessary, assume the first r rows of
M are linearly independent. If we write

M =

(
A
B

)
,

with A an r×r and B an (n−r)×r matrix then A will be invertible. Hence,
starting with Lemma 12.

V = {Mt : t ∈ Rr} =

{(
A
B

)
A−1At : t ∈ Rr

}
=

{(
u

BA−1u

)
: u ∈ Rr

}
,

after the change of variable t→ u = At. Since A is invertible u varies over Rr

as t varies over Rr. Thus V is the graph of the linear function u→ BA−1u.

(⇐= ) If V can be written as a graph of a linear function Rr → Rn−r then
there exists an (n−r)× r matrix D such that

V =

{(
u
Du

)
: u ∈ Rr

}
=

{(
Ir
D

)
u : u ∈ Rr

}
.

Because of the identity matrix
(
Ir
D

)
is of full rank. So, by Lemma 12, V

is a vector subspace of Rn of dimension r. �
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Planes in Rn.

Definition 16 A plane P in Rn of dimension r is the translate of a vector
subspace in Rn of dimension r.

Some authors would demand a plane be only of dimension 2 and what
we are defining for larger dimensions are affine subspaces. I will continue,
though, with my definition.

The results on vector spaces can be immediately rewritten for planes as

Corollary 17 P ⊆ Rn is a plane of dimension r iff

• there exists a point p ∈ Rn and a full rank matrix M ∈ Mn,r (R) such
that P = {p +Mt : t ∈ Rr},

• there exists a point p ∈ Rn and a full rank matrix N ∈Mn−r,n (R) such
that P = {x ∈ Rn : N(x− p) = 0},

• there exists a point a ∈ Rn−r and a matrix D ∈Mn−r,r (R) such that

P =

{(
v

a +Dv

)
: v ∈ Rr

}
.

Proof Perhaps only the last part requires a proof. By Lemma 15

P = p +

{(
Ir
D

)
u : u ∈ Rr

}
,

for some p ∈ Rn and matrix D ∈Mn−r,n (R). Write

p =

(
p0

p1

)
with p0 ∈ Rr and p1 ∈ Rn−r. Then

P =

{(
p0 + u

p1 +Du

)
: u ∈ Rr

}
=

{(
v

p1 +D (v − p0)

)
: v ∈ Rr

}

on changing variable from u to v = p0 + u. Then a = p1 −Dp0. �
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Definition 18 An affine function A : Rr → Rn is the sum of a constant
vector a ∈ Rn and linear function L : Rr → Rn, so A = a + L.

Since every linear map is given by multiplication by some matrix we
deduce that A : Rr → Rn is an affine function iff there exists M ∈ Mn,r (R)
such that A (x) = a +Mx for all x ∈ Rr.

Thus the above results can be rephrased as, every plane is

• the image of an affine function, (t 7→ p +Mt)

• the null set of an affine function (x 7→ N(x− p)) and the

• graph of an affine function v 7→ a +Dv.

Given a surface S ⊆ Rn, of dimension r, and a point p ∈ S then there are
many planes of dimension r passing through p. Coming up, we will define
the Tangent Plane to S at p and show that it is the best approximation, in
some sense, to S out of all planes containing p. We know from Corollary 17
that this plane can be written as a graph. Since this plane approximates the
surface then we might hope that the surface can also be written as a graph,
at least ‘close to’ p. This is, in fact, true and if S is given as a level set
then this is the content of the Implicit Function Theorem while if S is given
parametrically it is a deduction from the Inverse Function Theorem.
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3.5 Level sets are graphs (locally)

We have seen by example that a level set is not necessarily a graph. But
it is true ‘locally’. The meaning of this word will come from the following,
Fundamental Result.

Theorem 19 Implicit Function Theorem. Suppose that f : U ⊆ Rn →
Rm is a C1-function on an open set U where 1 ≤ m < n, and there exists
p ∈ U such that f(p) = 0 and the Jacobian matrix Jf(p) has full-rank m.

Suppose that the final m columns of the Jacobian matrix Jf(p) are
linearly independent. Write

p =

(
p0

p1

)
,

where p0 ∈ Rn−m and p1 ∈ Rm .

Then there exists

• an open set V : p0 ∈ V ⊆ Rn−m,

• a C1-function φ : V → Rm and

• an open set W ⊆ U ⊆ Rn containing p

such that for w ∈ W, written as

w =

(
v
y

)
with v ∈ Rn−m and y ∈ Rm,

f(w) = 0 if, and only if, v ∈ V and y = φ(v) .

Proof is given in the next Chapter, but it is not examinable. �

Corollary 20 With the surface S given as a level set, so

S = {x : f(x) = 0, Jf(x) of full rank} (7)

and p ∈ S, there exists an open set W ⊆ U ⊆ Rn containing p, an open set
V ⊆ Rn−m and a C1-function φ : V → Rm such that

S ∩W =

{(
v

φ(v)

)
: v ∈ V

}
.
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Proof follows immediately from the Implicit Function Theorem. �

We interpret Corollary 20 by saying that at every point of the surface (7)
it is locally a graph.

What if m columns of the Jacobian matrix Jf(p) are linearly independent
but not the last m columns? The j-th column of Jf(p) is djf(p) , the
derivative with respect to xj. Permuting (or relabelling) the variables xj

in Rn therefore permutes the columns in Jf(p). There is no right way to
label the axes in Rn, there is always choice (up to some considerations on
orientation which need not concern us). Thus, by permuting the variables in
the domain Rn, we can assume that the last m columns of Jf(p) are linearly
independent. See Appendix for an example.

We return to an earlier example.

Example 21 Consider the surface of points in R4 satisfying

x2 + y2 + u2 + v2 = 11 and xy + uv = 1.

A point on this surface is p = (1, 1, 0, 3)T . Show that in some open set
of R2 containing (x, y)T = (1, 1)T the solutions of this system can be given
by some C1-functions u = u(x, y), v = v(x, y).

What can we say at the point p′ = (3, 0, 1, 1)T ?

Solution The Jacobian matrix at p is

Jf (p) =

(
2x 2y 2u 2v
y x v u

)
x=p

=

(
2 2 0 6
1 1 3 0

)
.

The last two columns (0, 3)T and (6, 0)T are linearly independent. So no
reordering of columns is necessary to apply the Implicit Function Theorem.

This says that there exists,

• an open set V : (1, 1)T ∈ V ⊆ R2,

• a C1-function φ : V → R2 and

• an open set W ⊆ U ⊆ R4 containing p

such that f(w) = 0, w ∈ W iff

w =

(
v

φ(v)

)
with v ∈ V.
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That is, writing v = (x, y)T ,

w =


x
y

φ1 (x, y)
φ2 (x, y)

 with (x, y)T ∈ V.

So the solution to the Example is that we choose u = φ1 and v = φ2, the
component functions of the φ whose existence is assured by the Implicit
Function Theorem.

At p′ the last two columns of

Jf (p′) =

(
6 0 2 2
0 3 1 1

)
are not linearly independent so the Implicit Function Theorem does not
imply that u and v are functions of x and y in an open set containing (3, 0)T .
(Note, this does not mean that u and v are not functions of x and y locally,
just that the Implicit Function Theorem doesn’t tell us that they are.)

We could note instead that the first and fourth columns are linearly in-
dependent and so the Implicit Function Theorem implies that x and v are
functions of y and u in an open set of R2 containing (0, 1)T . �
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3.6 Parametric sets are graphs (locally)

We now quote a result as fundamental as the Implicit Function Theorem.

Theorem 22 Inverse Function Theorem If f : U ⊆ Rn → Rn is a C1-
function on an open subset U ⊆ Rn such that for some a ∈ U the Jacobian
matrix Jf(a) is of full rank then f is locally invertible. This means that there
exists an open set V : a ∈ V ⊆ U, such that

1. f : V → f(V ) is a bijection,

2. f(V ) is an open subset of Rn,

3. the inverse function g = f−1 : f(V ) → V is C1 and dgb = df−1a , or
Jg (b) = Jf(a)−1 , where b = f(a).

Proof relegated to a question on a problem sheet, where it is derived from
the Implicit Function Theorem. �

Corollary 23 Let S be a surface given parametrically, so

S =
{
F(u) : u ∈ U and JF(u) is of full-rank

}
, (8)

for a C1-function F : U ⊆ Rr → Rn.

Let p ∈ S so there exists q ∈ U for which F(q) = p. Assume that the rows
1 to r of JF(q) are linearly independent.

Then there exist open sets V ⊆ U ⊆ Rr, with q ∈ V , and T ⊆ Rr along with
a C1-function φ : T → Rn−r such that

S ∩ F(V ) =

{(
t

φ(t)

)
: t ∈ T

}
.

Note The point p = F(q) ∈ F(V ) and so, on the left, we are looking at
points on the surface “local to” p. On the right, the set T contains h(q)
(defined below in (9)) and so the graph is over t “local to” h(q).

Proof Write

F(u) =

(
h(u)

k(u)

)
, (9)

14



say, where h : U ⊆ Rr → Rr and k : U ⊆ Rr → Rn−r are given by

h(u) =

 F 1(u)
...

F r(u)

 and k(u) =

 F r+1(u)
...

F n(u)


respectively. Then

JF(u) =

(
Jh(u)

Jk(u)

)
.

By assumption the first r rows of JF(q) are linearly independent i.e. all
the rows of Jh(q) are linearly independent. Hence Jh(q), a square matrix
with all its rows linearly independent, is full-rank.

Apply the Inverse Function Theorem to the function h : U ⊆ Rr → Rr

at the point q ∈ U ⊆ Rr. The fact that Jh (q) of full-rank thus implies there
exists

• an open set V : q ∈ V ⊆ U ,

• T = h(V ) an open set in Rr,

• an inverse C1-function h−1 : T → V.

Then

S ∩ F(V ) =

{(
h(u)

k(u)

)
: u ∈ V

}
=

{(
t

k (h−1 (t))

)
: t ∈ T

}
,

having changed variable from u to t = h(u). Hence the result follows with
φ = k ◦ h−1. �

What if r rows of JF(q) are linearly independent but not the first r rows?
The image of q is F(q) ∈ Rn and so, permuting the coordinates of Rn will
permute the coordinate functions F j(q) and thus, in turn, the rows of JF(q).
Therefore, by permuting the variables in the domain Rn, we can assume that
the first r rows of Jf(p) are linearly independent. See Appendix for an
example.

The Implicit Function Theorem and Inverse Function Theorem are exam-
ples of existence results. They assure us that functions with certain properties
exist, but give no indication of how to find or construct them.
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Example 24 Show that at each point on

S =


 u3

v3

uv

 : u 6= 0

 ,

the surface can be given locally as a graph.

Solution (Problems class) We know from Example 7 that S is a surface.
The Jacobian matrix is

JF(u) =

 3u2 0
0 3v2

v u

 .

If p is a point on the surface then p = JF(q) for some q = (k, `)T ∈ R2.
If both k, ` 6= 0 then the two top rows of JF(q) are linearly independent.
We can then apply Corollary 23 directly and points on the surface “local to”
p are in the graph (x, y, φ (x))T for some φ : R2 → R when x = (x, y)T is

“local to” (k3, `3)
T

If ` = 0 then

JF(q) =

 3k2 0
0 0
0 k


and the first and third rows are linearly independent. this time, close to
p the points on the surface are given by the graph (x, φ (x) , z)T for some

φ : R2 → R when x = (x, z)T is “local to” (k3, 0)
T

.

If k = 0 then locally the points are given by the graph (φ (x) , y, z)T for

some φ : R2 → R when x = (y, z)T is “local to” (`3, 0)
T

.
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3.7 *Manifolds

Not covered in lectures.

We have made vague definitions of a surface as ‘it could’ be an image set,
Definition 6, or ‘it could be’ a level set, Definition 2. We have then observed
that every image or level set is locally a graph. We can, instead, cut out the
image and level sets and define a surface as something that is everywhere
locally a graph. We don’t call it a surface though.

Definition 25 An r-dimensional manifold (or r-manifold for short)
in Rn is a subset M ⊆ Rn such that for all p ∈M there exists

• an open set W ⊆ Rn containing p,

• U an open subset of U ⊆ Rr,

• a C1-function φ : U → Rn−r,

such that, up to permutations of the coordinates of Rn, M ∩W is the graph
of φ, i.e.

M ∩W =

{(
u

φ(u)

)
: u ∈ U

}
.

Alternative definitions of a manifold

Definition 25 essentially says that a manifold is a union of graphs. It can
similarly be given as a union of parametric sets, Definition 26 below, or a
union of level sets, Definition 27.

Definition 26 An r-dimensional manifold (or r-manifold for short)
in Rn is a subset M ⊆ Rn such that for all p ∈M there exists

• an open set V ⊆ Rr,

• a C1-function F : V → Rn, such that the Jacobian matrix JF(v) is of
full rank for all v ∈ V,

• an open set W ⊆ Rn with p ∈ W,

such that M ∩W = F(V ).

Thus M is the union of the image sets F(V ) for pairs of sets and functions
(V,F).

The second alternative is
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Definition 27 An r-dimensional manifold (or r-manifold for short)
in Rn is a subset M ⊆ Rn such that for all p ∈M there exists

• an open set U ⊆ Rn with p ∈ U,

• a C1-function f : U → Rn−r with Jf(x) of full-rank for all x ∈ U,

such that M ∩ U = f−1 (0) .

Thus M is the union of the level sets f−1(0) for functions f .

More might be demanded of the functions φ, F or f , i.e. that they might
be homeomorphisms, diffeomorphisms or have derivatives of higher order.

Also, it may be possible that, for different p ∈ M, their associated open
sets W may overlap. We may well demand that the functions φ, F or f
associated with each W work in some ‘consistent’ way on the intersection.
All of this is the subject of the studies on Manifolds found in MATH41061
Differentiable Manifolds.
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3.8 Conclusion

For a surface S ⊆ Rn given by the image set of a C1-function F : U ⊆ Rr →
Rn,

• it is easy to find a point on the surface S since F(u) lies in S for all
u ∈ U ,

• it is hard to check if a given p ∈ U lies in S when you have to solve
F(u) = p,

• it is locally a graph.

For a surface S ⊆ Rn given by the level set f−1(0) for a C1 function f : V ⊆
Rn → Rm,

• it is hard to find a point on S when you have to solve f(x) = 0,

• it is easy to check if a given p ∈ U lies in S, you need only check if
f(p) = 0,

• it is locally a graph.
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Appendix for Section 3 part 1.

1. Full Rank

Recall from Linear Algebra A set of vectors {vi}1≤i≤r ⊆ Rn is linearly
independent iff given a set of real numbers {ci}1≤i≤r :

∑r
i=1 civi = 0 we must

have ci = 0 for all 1 ≤ i ≤ r.

A set of vectors {vi}1≤i≤r ⊆ Rn is linearly dependent iff there exists a set
of real numbers {ci}1≤i≤r, not all zero, for which

∑r
i=1 civi = 0.

If M ∈ Mm,n (R) is a matrix then the row rank of M is the number
of linearly independent rows and the column rank of M is the number of
linearly independent columns.

An AMAZING fact about matrices is that row rank equals column rank.
This common value is called the rank of the matrix.

If M is an m×n matrix then row rank M ≤ m and column rank M ≤ n.
So the common value, rank M, must be ≤ both m and n. That is, rank
M ≤ min (m,n).

We say M is of full-rank if the rank of M equals min (m,n).

Example 28 The matrix
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
1 2 1 0 0 0

 (10)

has row rank 3; the first three rows are linearly independent whilst r4 =
r1 + 2r2 + r3.

The matrix  −1 1 1 2 1
−1 1 1 2 1
0 0 3 1 1

 (11)

has column rank 2; for example c2 and c5 are linearly independent whilst
c1 = −c2, c3 = 3c5 − 2c2 and c4 = c5 + c2.

Note how (10) has column rank 3 and (11) has row rank 2 (r1 = r2).

Note that neither matrix in Example 28 is of full rank.
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What if the matrix M has only one row or column? The vectors vi,
1 ≤ i ≤ r are linearly dependent iff there exist constants ci, not all zero, such

that
∑r

i=1 c
ivi = 0. When you have only one vector write this definition

with r = 1, so v is linearly dependent iff there exists a non-zero constant
such that cv = 0 which can only happen if v = 0. Taking the contrapositive
of this, one vector v is linearly independent iff v 6= 0.

2. The Jacobian matrix of a graph written as an image
set.

We build up in steps to a result used, without proof, when looking at the
Jacobian matrix of a graph.

a. The Jacobian matrix of the identity map is the identity matrix.

Proof Let id : Rr → Rr be the identity map, so id(x) = x for all
x ∈ Rr. The i-j-th element of Jid(x) is the j-th partial derivative of
the i-th component of x, i.e.

∂xi

∂xj
=

{
1 if i = j
0 if i 6= j.

Thus

(
∂xi

∂xj

)
1≤i,j≤r

= Ir.

Hence Jid(x) = Ir for all x ∈ Rr.

b. Given g : Rr → Rp and h : Rr → Rq define k : Rr → Rp+q by

k(u) =

(
g(u)

h(u)

)
,

for u ∈ Rr. Then it is easy to see that

Jk(u) =

(
Jg(u)

Jh(u)

)
.
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c. Parts a. and b. are combined in the example of

F(u) =

(
u

φ(u)

)
,

for u ∈ Rr and φ : Rr → Rn−r. Then the graph of φ will be the image
of F. Yet the image of F is only a surface at points at which JF(u) is
well defined and of full-rank so we need to know its Jacobian matrix.
But we can write F(u) as (

id(u)

φ(u)

)
where id : Rr → Rr Then, by Parts a. and b. this is

JF(u) =

(
Jid(u)

Jφ(u)

)
=

(
Ir

Jφ(u)

)
.

d. Finally this form of JF(u) is of full rank. To not be of full rank the
columns have to be linearly dependent which means that there exists
a column that can be written as a linear combination of all the other
columns. If this is the i-th column then, because of the identity matrix,
the i-th column has 1 in the i-th row while all other columns have 0
and there is no linear combination of the zeros that will give 1, Hence
JF (u) cannot not be full-rank, i.e. it is full rank.
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3. Graphs are level sets.

The graph of φ : U ⊆ Rr → Rm is

(
u

φ(u)

)
=



u1

u2

...
ur

φ1(u)
φ2(u)
...
φm(u)


=



u1

u2

...
ur

ur+1

ur+2

...
ur+m


.

From this we can see the graph is the level set of points (u1, ..., ur+m) ∈ Rr+m

satisfying the m equations

uj − φj−r
(
u1, ..., ur

)
= 0

for r + 1 ≤ j ≤ r +m.

4. Jacobian matrix of a graph written as level set.

Repeat the last section but choose m = n − r so the graph is a surface
in Rn. Given φ : U ⊆ Rr → Rn−r we define fφ : U×Rn−r → Rn−r by first
writing x ∈ U×Rn−r as

x =

(
u
y

)
, (12)

with u ∈ U , y ∈ Rn−r. Then set

fφ(x) = fφ

((
u
y

))
= y − φ(u) .

Thus x ∈ Gφ, the graph of φ, if, and only if, fφ(x) = 0.

What is next required is the Jacobian matrix Jfφ(x). In component form,
(12) gives

xi =

{
ui if 1 ≤ i ≤ r

yj with j = i− r if r + 1 ≤ i ≤ n,

from (12). Then, if 1 ≤ i ≤ r, the i-th column of Jfφ (x) is

difφ(x) =
∂

∂xi
fφ(x) =

∂

∂xi
(y − φ(u)) = − ∂

∂ui
φ(u) = −diφ(u) ,

the i-th column of −Jφ(u).
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If r + 1 ≤ i ≤ n, then

difφ(x) =
∂

∂yj
(y − φ(x)) =

∂

∂yj
y = ej,

the j-th column of the identity matrix In−r, where j = i− r. Make sure you
follow all these equalities.

Put these columns together as Jfφ(x) = (−Jφ(u) | In−r).

Finally this form of Jfφ(x) is of full-rank. This is because of the identity
matrix for then no row can be written as linear combination of the other rows
(as must be the case if the rows are linearly dependent). For example the first
row ends in a 1 while all the other rows end in 0. So no linear combination
of the other rows will give us the first row and the 1 at the end of it. The
same argument works for writing any other row as a linear combination of
the remaining rows.
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5. Rn or Rr×Rn−r?

Rn is a set of vectors whereas Rt × Rn−r is the set of ordered pairs of
vectors, so Rn cannot equal Rt × Rn−r. But there is a simple bijection. If
x ∈ Rn write

x =

(
a
b

)
.

Define a map Rn → Rt × Rn−r by x 7→ (a,b).

Because of this bijection we consider Rn to be Rt×Rn−r, and vice-versa,
as appropriate. This was used particularly when we looked at level sets as
graphs.

6. The surface of the unit ball in R3.

As an example to show that not every implicitly defined surface or every
level set surface can be written as a graph we used the boundary of a disc in
R2. An alternative example is the boundary of a sphere in R3.

The surface of the unit ball in R3 is often parameterized as
 cos θ sinϕ

sin θ sinϕ
cosϕ

 :
0 ≤ θ < 2π

0 ≤ ϕ ≤ π

 .

If ϕ is restricted to 0 ≤ ϕ < π/2 then the surface is the top half of the
sphere and it is the graph of

z =
√

1− x2 − y2 for (x, y) : x2 + y2 < 1.

It may have not been obvious but I have defined graphs on open sets. In
this case {(x, y) : x2 + y2 < 1}. The bottom half of the sphere will be given
by the graph of

z = −
√

1− x2 − y2 for (x, y) : x2 + y2 < 1.

If we take the union of these caps they cover all but the equator, x2+y2 =
1, of the surface of the sphere. We can then put on other caps

y =
√

1− x2 − z2 for (x, z) : x2 + z2 < 1,

y = −
√

1− x2 − z2 for (x, z) : x2 + z2 < 1.

But these four caps will not cover the points (1, 0, 0) and (−1, 0, 0). We will
need two more caps for these. Hence we will require 6 graphs to cover the
surface of the ball.
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7 Permuting the coordinate functions in a parametric
set.

Assume F : U ⊆ Rr → Rn, q ∈ U and that the n×r Jacobian matrix
JF(q) has full rank. In the lectures it is claimed that, “by permuting the
coordinates of Rn we can assume that the first r rows of JF(q) are linearly
independent.” We will see this by way of an example.

Example A Define F : R2 → R4 by

F(u) =


uv2

u2 + 2v2

u3 + v

v3 + u


for u = (u, v)T ∈ R2. At q = (1,−1)T the Jacobian matrix is

JF(q) =


v2 2uv

2u 4v

3u2 1

1 3v2


x=q

=


1 −2
2 −4
3 1
1 3

 .

The columns are linearly independent and so the column rank, and thus
the row rank, is two. This means there must be two linearly independent
rows but we see that the first two rows are not linearly independent. Yet I
can permute the coordinate functions of F to make them so. For example,
permuting the 2nd and 3rd coordinate functions of F, i.e. the 2nd and 3rd
coordinates of R4, we get

G(u) =


uv2

u3 + v

u2 + 2v2

v3 + u

 ,

This time

JG(q) =


1 −2
3 1
2 −4
1 3

 .

The first two rows are now linearly independent. �
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To express this mathematically let σ ∈ Sn be a permutation on {1, ..., n}.
Then define the function (given the same name) σ : Rn → Rn by xi 7→ xσ(i)

for all 1≤ i≤n. This can be written as (σ(x))i = xσ(i) for all i. Finally, given
F : U ⊆ Rr → Rn, define σ(F) : U ⊆ Rr → Rn by σ(F) (u) = σ(F(u)) for
all u ∈ U .

Next, given M ∈Mn,r (R) define σ (M) by permuting the rows, ri → rσ(i)

for 1 ≤ i ≤ n. Then it can easily be seen that the Jacobian matrix of a
permuted function equals the permuted Jacobian matrix. That is,

Jσ(F) (u) = σ (JF(u)) .

Let now S = {F(u) : u ∈ U, JF(u) of full-rank} be the parametric sur-
face in Rn given by F. Given q ∈ U then p = F(q) is a point on the surface.
Let σ ∈ Sn be a permutation which ensures that the first r rows of σ (JF(q))
are linearly independent. Let G = σ (F) .

Define S ′ = {G(u) : u ∈ U, JG(u) of full-rank}. Note that JG(u) and
JF(u) have the same rank and so the same u occur in both S and S ′. We
can now apply the Inverse Function Theorem in the form of Corollary 23.
So, there exists

• an open set V : q ∈ V ⊆ U ,

• T an open set in Rr,

• and a C1-function φ : T → Rn−r such that

S ′ ∩ G(V ) =

{(
t

φ(t)

)
: t ∈ T

}
.

By permuting the coordinate functions back we thus get

S ∩ F(V ) =

{
σ−1

(
t

φ(t)

)
: t ∈ T

}
.
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Return to Example A It is easily checked that JF(u) if of full rank for
all u ∈ R2. So S = {F(u) : u ∈ R2} is a surface and p = F(q) = (1, 3, 2, 0)T

at q = (1,−1)T is a point on S.

To get the Jacobian matrix of the correct form we chose G1 = F 1; G2 =
F 3; G3 = F 2 and G4 = F 4. Yet G = σ (F) for some σ ∈ S4, i.e. Gi = F σ(i)

for 1 ≤ i ≤ 4. So we have chosen σ(1) = 1, σ(2) = 3, σ(3) = 2 and σ(4) = 4,
that is

σ =

(
1 2 3 4
1 3 2 4

)
.

We apply the Inverse Function Theorem to the ‘permuted surface’ S ′ =
{G(u) : u ∈ R2} at p′ = G(q) = (1, 2, 3, 0)T . Thus there exist open sets V
and W and C1 function φ such that

S ′ ∩ G(V ) =




s

t

φ1(s, t)

φ2(s, t)

 :

(
s
t

)
∈ W

 .

‘Undoing’ the permutation gives

S ∩ F(V ) =




s

φ1(s, t)

t

φ2(s, t)

 :

(
s
t

)
∈ W

 .

Note that there are many pairs of rows of JF(q) which are linearly inde-
pendent, not just the first and third. For example, the last two rows are
linearly independent which means there exists V ′,W ′ ⊆ R2 and C1 function
η : W ′ → R2 such that

S ∩ F(V ′) =




η1(s, t)

η2(s, t)

s

t

 :

(
s
t

)
∈ W ′

 .
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8. Permuting the variables in a level set.

Let S = f−1 (0) for some f : U ⊆ Rn → Rm and, for p ∈ S, assume that
the m× n matrix Jf(p) has full rank m. In particular Jf(p) has m linearly
independent columns. In the lectures it is claimed that, “by permuting the
variables in the domain Rn, we can assume that the last m columns of Jf(p)
are linearly independent.”

To see this consider first an example of a level set,

x2 + y3 + z4 = 18,

xy + yz + z3 = 2,

at p = (4, 1,−1)T . For x ∈ R3 define

f(x) =

(
x2 + y3 + z4 − 18
xy + yz + z3 − 2

)
when

Jf(p) =

(
2x 3y2 4z4

y x+ z y + 3z2

)
x=p

=

(
8 3 4
1 3 4

)
.

The Jacobian matrix is of full-rank, the two rows are linearly independent,
but the last two columns are not linearly independent. Yet if we permute x
and y we get the system

y2 + x3 + z4 = 18,

yx+ xz + z3 = 2,
i.e.

x3 + y2 + z4 = 18,

xy + xz + z3 = 2.

For x ∈ R3 define

g(x) =

(
x3 + y2 + z4 − 18

xy + xz + z3 − 2

)
,

then

g

 x
y
z

 = f

 y
x
z

 ,

which shows the permutation of variables in R3. The point p becomes p′ =
(1, 4,−1)T and the permutation of variables becomes a permutation of the
columns in the Jacobian matrix so

Jg(p′) =

(
3 8 4
3 1 4

)
,
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and last two columns are now linearly independent.

The Implicit Function Theorem now says that the two variables rep-
resented by the last two columns, y and z, are functions of the remaining
variables, x. That is, there exists

• an open set V : 1 ∈ V ⊆ R3−2 = R,

• a C1-function φ : V → R2 and

• an open set W : p′ ∈ W ⊆ R3

such that for (x, y, z)T ∈ W

g

 x
y
z

 = 0 if, and only if, x ∈ V and

(
y
z

)
= φ(x) .

That is, if y = φ1(x) and z = φ2(x), the component functions of φ(x). Hence,
g(x) = 0 and x ∈ W iff x is given as a graph

x =

 x

φ1(x)

φ2(x)

 , x ∈ V.

Returning to our original system given by f ,

f

 x
y
z

 = 0 iff g

 y
x
z

 = 0 iff y ∈ V , x = φ1(y) and z = φ2(y) .

That is f(x) = 0 iff x is given as a point on a graph

x =

 φ1(y)

y

φ2(y)

 , y ∈ V. (13)
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The important observation here is that, even though in

Jf(p) =

(
8 3 4
1 3 4

)
,

the last two columns are not linearly independent, as required for the Im-
plicit Function as I have given it, the first and third columns are linearly
independent. This is sufficient to say that the variables associated with
those columns, x and z, can be given as functions of the remaining variables,
y, as seen in (13) .

We can recast the above using permutations. By assumption there exists
some permutation of the columns of Jf(p) so that the last m are linearly
independent. To permute the columns we permute the variables in Rn. Let
τ ∈ Sn be a permutation such that the last m columns of Jf(τ(x)) are
linearly independent. Let g(x) = f(τ(x)) and apply the Implicit Function
Theorem to g at p′ = τ−1 (p) to find V , W ′ with p′ ∈ W ′ and φ : V → Rn

such that

{x ∈ W ′ : g(x) = 0} =

{(
v

φ(v)

)
: v ∈ V

}
(14)

But, since permutations are bijections,

{x ∈ W ′ : g(x) = 0} =
{
τ−1(t) ∈ W ′ : g

(
τ−1(t)

)
= 0

}
= τ−1 {t ∈ τ (W ′) : f(t) = 0} . (15)

Combine (14) with (15) to get

{t ∈ W : f(t) = 0} =

{
τ

(
v

φ(v)

)
: v ∈ V

}
,

where W = τ (W ′). Note that p′ ∈ W means that τ (p′) = τ (τ−1 (p)) = p ∈
W .
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9. An example of the use of the Implicit Function Theorem:

Example 29 Consider the level set of points in R4 satisfying

x2 + y2 − 2uv + 2xv = 9

2xy − uy + vx+ uv = 0.

A solution of the system is (1, 0,−1, 2)T . Show that in some open set of R2

containing (x, y)T = (1, 0)T the solutions of this system can be given by some
C1-functions u = u(x, y), v = v(x, y).

Can we write the solutions as x = x(u, v), y = y(u, v) and if so in the
region of what point in R2?

Solution With w = (x, y, u, v)T ∈ R4 this level set is w : f(w) = 0 where
f : R4 → R2 is given by

f(w) =

(
x2 + y2 − 2uv + 2xv − 9

2xy − uy + vx+ uv

)
.

At p = (1, 0,−1, 2)T the Jacobian matrix is

Jf(p) =

(
2x+ 2v 2y −2v −2u+ 2x
2y + v 2x− u −y + v x+ u

)
x=p

=

(
6 0 −4 4
2 3 2 0

)
.

The last two columns (−4, 2)T and (4, 0)T are linearly independent. So no
reordering of columns are necessary to apply the Implicit Function Theorem.

We need to write p =
(
pT0 ,p

T
1

)T
with p0 ∈ R2 in which case we must have

p0 = (1, 0)T .

Then the Implicit Function Theorem says there exists, an open set V :
p0 ∈ V ⊆ R2, a C1-function φ : V → R2 and an open set W ⊆ U ⊆ R4

containing p such that f (w) = 0, w ∈ W iff

w =

(
x

φ(x)

)
with x ∈ V.

That is,

w =


x
y

φ1(x, y)
φ2(x, y)

 with

(
x
y

)
∈ V.
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So the solution to the Example is that we choose u = φ1 and v = φ2, the
component functions of the φ whose existence is assured by the Implicit
Function Theorem.

Returning to the Jacobian Matrix Jf(p), we see that the first two columns,
(6, 2)T and (0, 3)T are linearly independent. We could permute the coordi-
nates in R4 to ensure these columns were the last two in the Jacobian matrix,
and then the conclusion of the Implicit Function Theorem would be that
these two variables can be given as functions of the remaining variables, i.e.
x and y can be given as C1 functions of u and v. The values of u and v in
p are −1 and 2, so x = x(u, v) and y = y(u, v) for (u, v)T in some open set
V : (−1, 2)T ∈ V ⊆ R2. �
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10. Background Linear Algebra

In the notes we assumed that if V ⊆ Rn is a vector subspace then
dimV⊥ = n − dimV . A way to see this is to start with a basis of V :
{v1,v2, ...,vr} say, where r = dimV . You can assume, by applying the
Gram-Schmidt method, that this set is orthonormal, i.e. vk • v` = 0 if k 6= `
and 1 if k = `.

Continuing with the Gram-Schmidt method you can complete this set to
a basis of Rn, {v1, ...,vr,w1, ...,wn−r} say, again an orthonormal set.

Then all x ∈ Rn can be written uniquely as

x =
n−r∑
j=1

αjwj +
r∑
i=1

βivi,

for some αj, βi ∈ R. By definition x ∈ V⊥ iff x • v = 0 for all v ∈ V iff
x • vi = 0 for all 1 ≤ i ≤ r. That is

0 = x • vi =
n−r∑
j=1

αjwj • vi +
r∑
i=1

βivi • vi = βi

for all 1 ≤ i ≤ r. Hence x ∈ V⊥ iff x =
∑n−r

j=1 αjwj i.e. x ∈ span {w1, ...,wn−r}.
That is

V⊥ = span {w1, ...,wn−r} ,

and so dimV⊥ = n− r = n− dimV .

If you were to repeat this argument, but starting with {w1, ...,wn−r} a
basis of V⊥, and complete it to a basis of Rn by adding in {v1,v2, ...,vr},
you would deduce (

V⊥
)⊥

= span (v1,v2, ...,vr) = V .

This is used in the proof of

Lemma 14 V ⊆ Rn is a vector subspace of dimension r iff there exists a
full rank matrix N ∈Mn−r,n (R) such that V = {x ∈ Rn : Nx = 0}.

Proof In the notes it was shown that

{x ∈ Rn : Nx = 0} = span {r1, ..., rn−r}⊥ ,

where rj, 1 ≤ j ≤ n− r, are the rows of N .
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( =⇒ ) Assume V ⊆ Rn is a vector subspace of dimension r. Then dimV⊥ =
n − r. Let {r1, ..., rn−r} be a basis of V⊥, so span {r1, ..., rn−r} = V⊥. Con-
struct N by choosing the i-th row of N to be ri for 1 ≤ i ≤ n− r. Since the
rows are linearly independent then N is of full rank. And

{x ∈ Rn : Nx = 0} = (span {r1, ..., rn−r})⊥ =
(
V⊥
)⊥

= V .

(⇐= ) Assume N ∈ Mn−r,n (R) is of full rank. Then {x ∈ Rn : Nx = 0} is
a vector space with

dim {x ∈ Rn : Nx = 0} = dim (span {r1, ..., rn−r})⊥

= n− (n− r) = r.

�

Calculation of basis. If given a vector space as {Mt : t ∈ Rr} we can read
off a basis from the columns of M . What if we are given the vector space as
{x ∈ Rn : Nx = 0}?

The matrix N does not need to be of full rank for this to be a vector
space, but we can remove those equations ri · x = 0 which can be written as
linear combinations of others and assume N is of full rank.

If N is of size m× n it must have m linearly independent rows and thus
m linearly independent columns. By permuting the axes of Rn if necessary,
assume the last m columns of N are linearly independent.

Write N = (A |B) with A and B matrices of size m× (n−m) and m×m
respectively. Here B is a square matrix and, by assumption, it’s columns are
linearly independent which means it is invertible. Then

Nx = 0 iff B−1 (A |B) x = 0 iff
(
B−1A | Im

)
x = 0.

Write

x =

(
u
v

)
with u ∈ Rn−m and v ∈ Rm. Then(

B−1A | Im
)
x = 0 iff B−1Au + Imv = 0,

i.e. v = −B−1Au. Hence

{x ∈ Rn : Nx = 0} =

{(
In−m

−B−1A

)
u : u ∈ Rn−m

}
. (16)
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Thus the columns of
( In−m

−B−1A

)
give a basis for {x ∈ Rn : Nx = 0} . Note

this also shows that dim {x ∈ Rn : Nx = 0} = n − m which agrees with
Lemma 14.

11. Surfaces as level sets f−1(0). Which f?

Let
S =

{
x ∈ V : f(x) = 0 and Jf(x) is of full-rank

}
,

for some f : V ⊆ Rn → Rm. This function is not unique, many choices will
lead to the same S, so is there a better f to choose out of all possibilities?
Unanswerable since there is no definition of ‘better’. But by the methods of
the last section we can ensure that Jf(x) has a particular form.

Take a point p ∈ S for which the m × n matrix Jf(p) has full rank m.
In particular Jf(p) has m linearly independent columns and by permuting
the variables in the domain Rn if necessary, we can assume that the last m
columns of Jf(p) are linearly independent.

Write Jf(p) = (E | F ) where F is an m×m matrix. Since the m columns
of F are linearly independent it is invertible with inverse H. Then

HJf(p) = H (E | F ) = (HE | Im) = (G | Im) ,

say, where G is a m× (n−m) matrix.

The matrix H is associated with the linear map LH : Rm → Rm, t→ Ht.
Recall, from the last Chapter, that the Jacobian matrix of a linear function
equals the matrix associated with the function, i.e. JLH (a) = H for all
a ∈ Rm. Consider the composite

f̃ = LH ◦ f : V ⊆ Rn → Rm.

Since LH is a linear map LH (x) = 0 iff x = 0. Thus

f(x) = 0 iff LH (f(x)) = 0 i.e. LH ◦ f(x) = 0.

That is, (LH ◦ f)−1 (0) = f−1 (0), i.e. the level sets are equal.

By the Chain Rule, for matrices, we find that

J f̃ (p) = J (LH ◦ f) (p) = JLH (b) Jf(p) = HJf(p) = (G | Im) .

So it is possible, when necessary in a proof, to assume that Jf(p) not only
has full rank but also has the form (G |Im) for some m× (n−m) matrix G.
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12. Proof of the Inverse Function Theorem

Inverse Function Theorem Suppose that f : U → Rn is a C1-function on
an open subset U ⊆ Rn such that for some a ∈ U the Jacobian matrix Jf(a)
is of full rank then f is locally invertible. This means that there exists an
open set V ⊆ U with a ∈ V, such that

1. f : V → f (V ) is a bijection,

2. f (V ) is an open subset of Rn,

3. the inverse function g = f−1 : f (V )→ V is C1,

4. dgb = df−1a (or Jg(b) = Jf(a)−1) where b = f(a).

Proof Given f : U → Rn, a C1-function on an open subset U ⊆ Rn, define
h : Rn × U ⊆ R2n → Rn by first writing w ∈ Rn × U as

w =

(
x

y

)
,

with x ∈ Rn and y ∈ U . Then set

h(w) = h

((
x

y

))
= x− f(y) .

The Jacobian matrix of h is Jh(w) = (In | − Jf(y)). Here Jf(y) is an
n× n matrix.

We are given a ∈ U , a point at which Jf (a) is non-singular, so let

p =

(
f(a)
a

)
∈ Rn × U.

Then h(p) = f(a)−f(a) = 0 and Jh(p) = (In| − Jf(a)) has full-rank because
of the occurrence of the identity matrix. But further, because of occurrence
of the −Jf(a) , a non-singular matrix, the last n columns of Jh(p), i.e. all
the columns, are linearly independent. So we can apply the Implicit Function
Theorem and no permutation of coordinates is required. Thus there exists

• an open set A ⊆ Rn containing f(a) ,

• a C1-function g : A→ Rn,

• an open set B ⊆ Rn × U containing p,
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such for
(
xT ,yT

)T ∈ B, (x, y ∈ Rn),

h

((
x

y

))
= 0 if, and only if, x ∈ A and y = g(x) .

Note that the set B can be written as A×V for some open set V ⊆ U ⊆ Rn.
Thus we have x−f(y) = 0, i.e. x = f(y) with y ∈ V if, and only if, y = g(x)
with x ∈ A. This gives the existence of a C1-inverse.

That dgb = df−1a follows from the Chain Rule. �
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